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ABSTRACT
Incomplete information often occur along with many database
applications, e.g., in data integration, data cleaning or data
exchange. The idea of data imputation is to fill the miss-
ing data with the values of its neighbors who share the
same information. Such neighbors could either be identified
certainly by editing rules or statistically by relational de-
pendency networks. Unfortunately, owing to data sparsity,
the number of neighbors (identified w.r.t. value equality)
is rather limited, especially in the presence of data values
with variances. In this paper, we argue to extensively en-
rich similarity neighbors by similarity rules with tolerance
to small variations. More fillings can thus be acquired that
the aforesaid equality neighbors fail to reveal. To fill the
missing values more, we study the problem of maximizing
the missing data imputation. Our major contributions in-
clude (1) the np-hardness analysis on solving and approx-
imating the problem, (2) exact algorithms for tackling the
problem, and (3) efficient approximation with performance
guarantees. Experiments on real and synthetic data sets
demonstrate that the filling accuracy can be improved.

1. INTRODUCTION
Incomplete data (a.k.a. null or missing data) are very

prevalent, owing to incomplete entry, inaccurate extraction
or heterogeneous schemas, e.g., in Web autonomous databases
[18]. Existing techniques on imputing missing data are mainly
in two categories, (1) statistical-based [12] and (2) rule-based
[7]. Both techniques share a similar idea of filling the miss-
ing data with the values of its neighbors (identified by sta-
tistical relational dependencies/editing rules) who share the
same information. The major problem in such data imputa-
tion, as indicated in [12], is the sparsity of data that many
reasonable value combinations are not observed. In other
words, no sufficient neighbors are available for imputing.

The variety of data (especially the Web data with vari-
ous information formats) further prevents finding sufficient
neighbors. We note that, in existing relational dependency
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Table 1: Example of incomplete data

Name Street Address
t1 Susan Frank Jordan Road –
t2 Susan L Frank JR –
t3 Terry Michel JR –
t4 Susan L Frank Jordan Road No402 Jordan Rd
t5 Susan L Frank Jordan Rd #402 Jordan Rd
t6 Terry K Michel Jordan Rd #531 Jordan Rd

networks [12] or editing rules [7], the neighbors are identi-
fied by value equality relationships, called equality neighbors.
These existing notations fall short in capturing the neighbors
whose data values are with small variations (very prevalent
in Web data). The imputation upon such limited neighbors
could barely be performed. (See examples, surveys below
and more discussions in Section 7.)

In this study, we identify a more extensive class of sim-
ilarity neighbors, with value similarity relationships identi-
fied by similarity rules [14]. By tolerance of small variations,
the enriched (similarity) neighbors can fill more missing data
that are not revealed by the very limited equality neighbors.

Example 1. Table 1 illustrates an example of incomplete
data. For instance, the value of t1 on attribute Address is
not available, i.e., a null cell denoted by t1[Address] =‘−’.

An editing rule [7] declared upon the functional depen-
dency semantics, (Name,Street → Address), states that if
two tuples ti, tj share equal Name and Street values, the
missing tj [Address] can be filled by the non-null ti[Address].

1

As a neighbor of tj , ti is identified certainly (analogous to
statistically below) by the editing rule, given their exactly
equal Name and Street values. Unfortunately, none of the
tuples in Table 1 share the same Name and Street values with
t1, i.e., t1 has no equality neighbor and cannot be filled.

The statistical-based method considers the statistical dis-
tribution of values, e.g., between Name and Address in the
relational dependency network [12]. It looks up the most
probable fillings of null cells, referring to combination statis-
tics. For instance, t4, t5 are identified statistically as the
neighbors of t2 referring to their equal Name. According to
the statistics (on t4, t5), the most probable Address appear-
ing together with Susan L Frank (in t2[Name]) is either No402
Jordan Rd or#402 Jordan Rd. Again, since there is no combi-
nation relationship observed between Terry Michel on Name
and any non-null value on Address, t3 has no statistical-based
equality neighbor, and t3[Address] could not be filled.

1ti with non-null ti[Address] is regarded as reference data[7]
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Figure 1: Tuple pairs in neighborhoods

Consider a similarity rule in the form of differential de-
pendencies (dd) [14].

dd1 : (Name, Street → Address, 〈[0, 1], [0, 9], [0, 2]〉)

It states that if two tuples have similar Name (i.e., having
Name value distance2 in the range of [0, 1]) and Street values
(with distance in [0, 9]), they must share similar Address
values as well (having Address value distance in [0, 2]).3

Tuples t1 and t4, sharing similar Name and Street values
w.r.t. dd1, are identified as similarity neighbors. No402 Jor-
dan Rd of t4 is thus suggested as a possible filling candidate
to t1[Address]. Similar filling candidate of t3[Address] can
also be obtained referring to the similarity neighborhood
between t3 and t6 w.r.t. dd1.

Figure 1 reports a survey of equality and similarity neigh-
borhoods, w.r.t. editing rules (based on equality) and simi-
larity rules (dds), respectively, in a real dataset Restaurant
(see Section 6 for details). Each point in the figure denotes
a tuple pair in neighborhood. As shown, the neighborhoods
are significantly enriched, from equality to similarity. When
some tuple value is missing, it is more likely to be filled from
the more extensive similarity neighbors.

To explore similarity neighbors, existing method [19] com-
putes a tuple-similarity which is indeed defined on value
equality. Imputation in [19] or [20] considers only the most
similar tuples with high tuple-similarities defined over all the
attributes. In order to find and utilize more similarity neigh-
bors, (1) dds can address the value similarity with small
value variations, which cannot be handled by value equality-
based tuple-similarity; and (2) dds could utilize more partial
similarities on a subset of attributes between tuples (not nec-
essarily the most similar ones that attributes are all similar).
For example, dd2 : (Street → Address, 〈[0, 0], [0, 3]〉) in Ex-
ample 3 considers the partial similarities between tuples on
a subset of Street and Address attributes, such as t5 and t6 in
Table 1. Such similarity relationships are not considered by
the tuple-similarity [19, 20], given the distinct Name values
(not denoting the same people). Therefore, the similarity
rule-based approach could utilize more similarity relation-
ships between tuples. As mentioned, identifying more simi-
larity neighbors is necessary for imputation, owing to data
sparsity and variety. According to the experimental evalu-
ation in Figure 9, applications such as entity reconciliation
directly benefit from our similarity rule-based imputation.

2e.g., edit distance, see [13] for a survey of string similarity.
3Similarity rules with distance thresholds can either be spec-
ified by domain experts or discovered from data [15].

Challenges
While similarity neighbors bring more imputation oppor-
tunities, it comes with new challenges. (1) Different from
the certain fixes by equality neighbors with editing rules [7],
multiple candidates may be suggested by similarity neigh-
bors for filling a cell. (2) The candidates for filling two null
cells could be incompatible w.r.t. similarity rules, owing
to the complex similarity relationships 4 (see examples on
t2 and t3 in Example 3). Such incompatibility is not con-
sidered in the statistical-based imputation [12] either.

A practical question is thus whether all the null cells could
be filled due to the incompatibility w.r.t. the similarity rules,
namely full filling (Definition 3). If not, to what extend we
can fill the null cells, known as maximum filling (Defini-
tion 2). Indeed, in light of the disability in imputing miss-
ing data (due to the aforesaid data sparsity and variety),
it is naturally desirable to gain null-cell fillings as many as
possible. As verified in the experiments in Section 6, the
imputation performance (f-measure) could be significantly
improved by gaining more fillings with the extensive similar-
ity neighbors, compared to the equality-based barely-filled
ones. Unfortunately, we find that maximizing the filling gain
is Max-SNP-hard, i.e., there exists ε > 0 such that achiev-
ing an approximation factor (1− ε) for the maximum filling
problem is np-hard (see Sections 2 and 4 for details).

Contributions
In this paper, we propose a similarity rule based approach
for imputing missing data. Our major contributions in this
study are summarized as follows.

• We analyze the hardness of the similarity rule based
imputation problem (Theorems 1 and 2) in Section 2.

• We present an approach for finding exact solutions in
Section 3.

• We study the hardness of approximation (Theorem 3)
and propose a heuristic for imputing in Section 4.

• We devise a randomized algorithm for returning maxi-
mal fillings, where an expected performance guarantee
is obtained (Theorem 8) in Section 5.1.

• We improve the algorithm by ensuring a deterministic
approximation factor instead of in expectation (Theo-
rem 10) in Section 5.2.

Finally, we report an extensive experimental evaluation on
both effectiveness and efficiency, over real and synthetic data
sets, in Section 6. It is highlighted that the imputation ac-
curacy is improved by considering similarity neighbors. We
also demonstrate the improvement in the record matching
application, after applying the proposed imputation.

Table 2 lists the frequently used notations in this paper.
Proofs of theoretic result are included in technique report [1].

2. PROBLEM STATEMENT
In this section, we formalize the problem of data imputa-

tion with similarity rules.

4In essence, unlike equality, transitivity is not applicable to
the similarity relationships, where similar (a,b) and similar
(b,c) do not necessary imply similar (a,c).
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Table 2: Notation

Symbol Description

domI (A) values on attribute A in a relation I

IA tuples with missing values on attribute A

m number of tuples in IA

∆(I ′
A, IA) set of filled cells, with filling gain |∆(I ′

A, IA)|
φ[A](t1, t2) local neighbor restriction between two tuples

Φ[A] a set of local neighbor restrictions

can(t[A]) candidates for filling a cell t[A]

E[W ] expectation of filling gain W

c the maximum candidate size of a tuple in IA

b the maximum neighbor size of a tuple in IA

2.1 Preliminaries

Similarity Rules
Consider a relation I with scheme R. Let domI (A) denote
all the values of an attribute A in I , i.e., domI (A) = ΠA(I ).

For each attribute A ∈ R, we associate a similarity/dis-
tance metric, dA, which satisfies non-negativity, dA(a, b) ≥
0; identity of indiscernibles, dA(a, b) = 0 iff a = b; sym-
metry, dA(a, b) = dA(b, a); where a, b ∈ domI (A) are val-
ues on attribute A. For example, the metric on a numer-
ical attribute can be the absolute value of difference, i.e.,
dA(a, b) = |a− b|. For a text attribute, we can adopt string
similarity, e.g., edit distance (see [13] for a survey).

A differential function φ[A] on attribute A specifies a dis-
tance restriction by a range of metric distances over A. We
say that two tuples t1, t2 in a relation I are compatible w.r.t.
the differential function φ[A], denoted by (t1, t2) � φ[A] or
(t1[A], t2[A]) � φ[A], if the metric distance of t1 and t2 on
attribute A is within the range specified by φ[A], a.k.a. sat-
isfy/agree with the distance restriction φ[A]. As the metric
is symmetric, it is equivalent to write (t2, t1) � φ[A].

A differential function may also be specified on a set of
attributes X, say φ[X], which denotes a pattern of differen-
tial functions (distance ranges) on all the attributes in X.
We call φ[A] a projection on attribute A of φ[X], A ∈ X.

A differential dependency (dd) [14] over R has a form
(X → A, φ[XA]) where X ⊆ R are determinant attributes,
A ∈ R is the dependent attribute, and φ[XA] is a differential
function on attributesX andA. It states that any two tuples
from R satisfying the differential function φ[X] must satisfy
φ[A] as well, φ[X] and φ[A] are the projections of differential
function φ[XA] on X and A, respectively.

A relation I of R satisfies a dd, denoted by I � (X →
A, φ[XA]), if for any two tuples t1 and t2 in I , (t1, t2) � φ[X]
implies (t1, t2) � φ[A]. We say a relation I satisfies a set Σ
of dds, I � Σ, if I satisfies each dd in Σ.

Rule-based Data Imputation
A null cell in a tuple t1 ∈ I on attribute A ∈ R is denoted
by t1[A] =−. It is regarded to be compatible with any other
data w.r.t. distance restrictions, i.e., always having (t1, t2) �
φ[A]. We consider an input with null cells I � Σ.5

5For potential errors existing in non-null cells so that I 6� Σ,
a data repairing step [4] can be applied first on the non-null
cells, which is out the scope of this study on filling null cells.

A filling I ′ of I is also an instance of R such that:
(1) Existing non-null cells do not change, i.e., t′i[A] = ti[A] if
ti[A] 6=−, where t′i[A] is the cell in I ′ corresponding to ti[A]
in I .
(2) Satisfaction of dds is still retained, having I ′ � Σ.
(3) The filling should not be a random guess without any
supporting neighbors. In other words, for each filled cell,
t′i[A] 6= ti[A], there should exist a tj ∈ I having (t′i, tj) �
φ[XA] for some (X → A, φ[XA]) ∈ Σ.

It is worth noting that filling a null cell on attribute A
(by any value) will never introduce violations to any dd in
the form of (X → B, φ[XB]), A 6= B. In data repairing [2],
changing the value of t[A], A ∈ X, could make it possibly
satisfy the condition on determinant attributes X of a de-
pendency and thus introduce violations. This never occurs
in data imputation, where filling a null cell could only make
it no longer agree the restriction on X (recall that a null cell
always agrees a distance restriction).

In other words, the imputation on attribute A could only
introduce violations to dds in the form of (X → A, φ[XA]).
To ensure (2) the satisfaction of dds in data imputation,
it is sufficient to exam I ′

A � ΣA for each A ∈ R, where
IA ⊆ I is the set of tuples with null cells on attribute A, I ′

A

is the corresponding filling of IA on attribute A, and ΣA ⊆ Σ
denotes dds in the form of (X → A, φ[XA]).

Since the imputation of an attribute A will not introduce
violations in other attributes B, we can fix the attributes
one-by-one. That is, for simplicity, we can focus on the
imputation over one attribute A at a time: finding a filling
I ′
A for IA such that I ′

A � ΣA.

Example 2 (Example 1 continued). Consider again dd1 :
(Name, Street → Address, 〈[0, 1], [0, 9], [0, 2]〉) in Example 1.
The relation I in Table 1 satisfies this dd1, since for any
two tuples, e.g., t4 and t5, having similar Name (distance
equal to 0 in the range of [0, 1]) and similar Street (distance
equal to 2 within [0, 9]), it always has (t4, t5) � φ[Address],
i.e., Address distance of t4 and t5 (equal to 2) is in [0, 2].

During data imputation, tuples t1 and t5, sharing similar
Name and Street values, i.e., compatible w.r.t. the differen-
tial function φ[Name,Street] specified in dd1, are identified
as value similarity neighbors. As illustrated in I ′

A in Table
3, a possible filling for the missing t1[Address] in Table 1 is
thus t1[Address]=#402 Jordan Rd, which is suggested by the
Address value of its similarity neighbor t5.

2.2 Problem Statement
As discussed in the introduction, referring to the difficulty

in filling a cell (owing to data sparsity and variety), we target
on the fillings that can fill more null cells.

Given IA with ΣA, let ∆(I ′
A, IA) = {t′i[A] | t′i[A] 6=−

, ti[A] =−, ti ∈ IA} be the difference on cells between IA
and its filling I ′

A w.r.t. ΣA. We call the total number of cells
filled in I ′

A for IA, |∆(I ′
A, IA)|, the filling gain.

Definition 1. A filling I ′
A is maximal if there does not exist

any other filling I ′′
A of IA, such that ∆(I ′

A, IA) ⊂ ∆(I ′′
A, IA).

A result of ‘−’ in a maximal fix I ′
A denotes that the cell

cannot be filled with the values from domI (A). The reason
is, as illustrated in the following example, filling candidates
in different cells may conflict with each other.

Definition 2. A filling I ′
A is maximum if there does not

exist any other filling I ′′
A of IA, such that |∆(I ′

A, IA)| <
|∆(I ′′

A, IA)|.
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Table 3: Example of maximal and maximum fillings

I ′
A . . . Address I ′′

A . . . Address
t1 . . . #402 Jordan Rd t1 . . . #402 Jordan Rd
t2 . . . No402 Jordan Rd t2 . . . #402 Jordan Rd
t3 . . . – t3 . . . #531 Jordan Rd

The set of maximum fillings is a subset of maximal fillings,
according to the definitions.

Definition 3. A filling I ′
A is full if every null cell on at-

tribute A in IA is filled, i.e., t′i[A] 6=−, ∀t′i ∈ I ′
A.

Example 3 (Example 1 continued). Consider the imputa-
tion on attribute Address, with IA = {t1, t2, t3}. Another
dd2, in ΣA = {dd1,dd2}, states that two Address values a1

and a2 in the same Street should be similar (with at most
3 different digits, having dAddress(a1, a2) ≤ 3), such as #402
Jordan Rd and #531 Jordan Rd in tuples t5 and t6 in Table 1.

dd2 : (Street → Address, 〈[0, 0], [0, 3]〉)

Such partial similarities between tuples t5 and t6 on a subset
of Street and Address attributes are not considered by the
existing tuple-similarity methods [19, 20], given the distinct
Name values (not denoting the same people). These enriched
similarity relationships may increase the chance of missing
data being filled, and preventing potential irrational filling.

To illustrate example maximal/maximum fillings, consider
possible filling candidates t2[Address] = No402 Jordan Rd
and t3[Address] = #531 Jordan Rd, w.r.t. dd1, having dis-
tance 5 not in the range [0, 3] specified by dd2. As shown
in I ′

A in Table 3, due to the choice of t2[Address] =No402
Jordan Rd, t3[Address] cannot be filled by any value w.r.t.
{dd1,dd2}. That is, I ′

A is already a maximal filling. In-
stead, I ′′

A in Table 3 is a full filling (also maximum and
maximal) that fills all the null cells.

Since the filling candidates suggested by different similar-
ity neighbors may conflict w.r.t. the constraints, obtaining
the maximum filling is non-trivial.

Problem 1. The full filling problem is to determine whether
there exists a full filling I ′

A of IA w.r.t. ΣA.

Problem 2. The maximum filling problem is to find a max-
imum filling I ′

A of IA w.r.t. ΣA.

The existence of a full filling can be determined by finding
the maximum filling and checking whether all the null cells
are filled. Unfortunately, both problems are hard.

Theorem 1. The full filling problem is np-complete.

Proof sketch. The proof is provided by constructing a reduc-
tion from the 3-CNF-SAT problem, which is one of Karp’s
21 np-complete problems [8]. In particular, we can show
that a 3-CNF has a satisfying assignment if and only if the
corresponding relation instance has a full filling.

Referring to the hardness of determining full filling, it is
not surprising to conclude the hardness of maximum filling.
Indeed, if the maximum filling can be found (efficiently), it
already determines whether a full filling exists or not.

Theorem 2. The maximum filling problem is np-hard.

(See proofs of all theorems in technique report [1].)

3. COMPUTING EXACT SOLUTIONS
In this section, we present an approach for computing the

maximum filling. Major steps include identifying local re-
strictions for specific tuple pairs, capturing filling candidates
from neighbors, and transforming the problem to an integer
linear programming (ILP) problem. (See Example 4 for in-
stances of all these steps.)

Local Neighbor Restrictions
Two tuples t1, t2 in I are said in neighborhood if there exists
at least one (X → A, φ[XA]) ∈ ΣA such that (t1, t2) � φ[X].

Given multiple dds in ΣA, we may have specific distance
restrictions for each individual tuple pair, according to the
intersection inference rule for dds implication [14].

Definition 4. For any tuples t1, t2 in neighborhood, the lo-
cal neighbor restriction φ[A](t1, t2) is an intersection (∧) of
differential functions (distance ranges) of dds

φ[A](t1, t2) =
∧

(X→A,φi[XA])∈ΣA,(t1,t2)�φi[X]

φi[A].

Filling Candidates
For each tuple ti ∈ IA with null cell on attribute A, we find
all the tuples tc ∈ I that are in neighborhood with ti w.r.t.
ΣA, i.e., neighbors. Each neighbor tc with non-null tc[A]
(from I \ IA) suggests a set of candidates for filling the null
cell ti[A], such that (t′i[A], tc[A]) � φ[A](ti, tc).

We denote can(ti[A]), or simply can(ti), the set of filling
candidates for the null cell ti[A],

can(ti[A]) =
∧

tc∈I\IA

{a ∈ domI (A) | (a, tc[A]) � φ[A](ti, tc)},

having can(ti) ⊆ domI (A). That is, can(ti[A]) is a set of
candidates that are compatible with all the neighbors of ti.
As mentioned, a tuple without any neighbor is not able to
be filled rationally and can be directly ignored.

Maximum Filling
Thus far, we have generated a set of filling candidates for
each null cell, based on its non-null neighbors. The can-
didates can be represented as or-set relations [10], e.g., as
shown in Table 4. As mentioned, not all the combinations
of candidates are valid/compatible, owing to local neighbor
restrictions between tuples in IA inside.

Consider IA ⊆ I of m tuples. Let ci = |can(ti)|. The
maximum filling problem can be written as integer linear
programming (ILP)

max

m∑
i=1

ci∑
j=1

xij (1)

s.t.

ci∑
j=1

xij ≤ 1, 1 ≤ i ≤ m (2)

xijwilvjk + xlkwilvjk ≤ 1, 1 ≤ i ≤ m, 1 ≤ j ≤ ci,

1 ≤ k ≤ cl, 1 ≤ l ≤ m (3)

xij ∈ {0, 1} (4)

where xij = 1 if the j-th candidate aj ∈ can(ti) is selected
to fill the null cell ti[A], otherwise 0. wil and vjk are con-
stants such that wil = 1 if tuples ti, tl ∈ IA are in neighbor-
hood, otherwise 0; and vjk = 0 if (aj , ak) � φ[A](ti, tl), aj ∈
can(ti), ak ∈ can(tl), otherwise 1.
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Figure 2: Filling candidates on attribute Address

Table 4: Example of filling candidates

can(IA) . . . Address
t1 . . . {#402 Jordan Rd, No402 Jordan Rd}
t2 . . . {#402 Jordan Rd, No402 Jordan Rd}
t3 . . . {#531 Jordan Rd}

Referring to formula (2),
∑ci

j=1 xij ≤ 1, there is at most

one candidate say aj ∈ can(ti) that can be selected for fill-
ing a null cell ti[A], i.e., xij = 1. The second constraint
formula (3) specifies that, for two tuples (ti, tl) in neighbor-
hood (wil = 1), their corresponding selected assignments,
say aj ∈ can(ti) and ak ∈ can(tl) having xij = xlk = 1, must
agree on (aj , ak) � φ[A](ti, tl), or equivalently vjk = 0, in
order to meet the requirement of xijwilvjk + xlkwilvjk ≤ 1.

Example 4 (Example 3 continued). Figure 2 illustrates the
neighborhoods of tuples in Table 1. Each ellipse denotes a
tuple. The edge between two tuples, e.g., t1 and t2, denotes
their neighborhood, i.e., (t1, t2) � φ[X] of dd1 (in black).

Different tuple pairs may have distinct local distance re-
strictions, e.g., (t2, t3) requires distance within [0, 3] accord-
ing to dd2 (in orange). For (t1, t4), multiple restrictions are
declared by dd1 and dd2. It requires distances not only in
the range of [0, 3] but also [0, 2], whose intersection is [0, 2].

The neighbors from I \ IA with non-null cells on A (solid
line ellipses) suggest a set of all possible candidates (circles)
for each null cell (dotted line ellipse), as indicated in Table
4. Note that not all the combinations of candidates are valid
fillings, owing to the distinct distance restrictions between
tuples in IA. For instance, No402 Jordan Rd for t2 and #531
Jordan Rd for t3, with distance 5 not in the range of [0, 3],
are not compatible and cannot make up a filling.

By transforming the problem to integer linear program-
ming, each candidate is associated with a variable xij . There
is only one pair of candidates No402. . . and #531. . . in vio-
lation to the local restriction [0, 3] between t2 and t3. We put
x21 + x31 ≤ 1. A solution of ILP can be x12 = x22 = x31 =
1, x11 = x21 = 0. It leads to a maximum filling t1[Address] =
t2[Address] =#402. . . and t3[Address] = #531. . . , which is
exactly the full filling I ′′

A in Table 3.

4. APPROXIMATION METHOD
Recognizing the hardness of imputation with dds, we fo-

cus on approximation approaches below. Unfortunately, ap-
proximation of the imputation problem is also hard.

Theorem 3. The maximum filling problem is Max-SNP-hard.
That is, there exists an ε > 0 such that (1−ε)-approximation
of the maximum filling is np-hard.

Figure 3: Filling by linear programming

Referring to the hardness of approximation, we study heuris-
tics for constructing feasible solutions that might achieve a
high filling gain.

A natural intuition is to consider linear programming (LP)
relaxation of ILP. That is, change the requirement of xij ∈
{0, 1} in formula (4) to 0 ≤ xij ≤ 1.

Since the outputs xij of LP are real numbers, we need
to round the solution into integers in order to form fillings.
Intuitively, we may greedily pick a xij with the maximum
value to fill in each step, i.e., Line 3 in Algorithm 1.

We say an assignment t′i[A] = aj is compatible with its
neighbor assignment t′l[A] in I ′

A, if (t′i[A] = aj , t
′
l[A]) �

φ[A](ti, tl). When the assignment is compatible with all
the neighbors, i.e., (t′i[A], t′l[A]) � φ[A](ti, tl), ∀φ[A](ti, tl) ∈
Φ[A], t′l ∈ I ′

A, we denote (t′i[A] = aj , I
′
A) � Φ[A]. As shown

in Lines 6-10 in Algorithm 1, a candidate aj is assigned only
if it is compatible with all the neighbors (Line 7).

Algorithm 1 Round(IA,Φ[A])

Input: IA with candidate sets can(IA) and local neighbor
restrictions Φ[A]

Output: A filling I ′
A

1: let x be a solution of linear programming
2: I ′

A := IA
3: while maxxij∈x xij ≥ 0 and |∆(I ′

A, IA)| < |IA| do
4: let xij be argmaxxij∈x xij

5: set xij to negative
6: t′i[A] := aj the j-th candidate in can(ti)
7: if (t′i[A] = aj , I

′
A) � Φ[A] then

8: set xil to negative for each al ∈ can(ti)
9: else
10: t′i[A] :=−
11: return I ′

A

The correctness of the Round algorithm is obviously en-
sured that none of the remaining null cells can further be
filled over the current assignments.

Proposition 4. Round always returns a maximal filling.

For each possible assignment t′i[A], we need to check whether
it violates with its neighbor. Finding the max xij in Line 3
can be done in constant time by amortizing all the xij values
over an integer domain of [0, d], e.g., by bd ∗ xijc, where d is
a large integer. Considering all the candidates of each tuple,
the complexity of Round algorithm is O(m2c), where c is
the maximum candidate size of a tuple in IA.

Example 5 (Example 4 continued). Let the numbers at-
tached to each candidate in Figure 3 denote a LP solution of
xij in Figure 2. According to

∑ci
j=1 xij ≤ 1, the summation

of each tuple is no greater than 1, e.g., 0.5 + 0.5 ≤ 1 in t1.
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Moreover, as mentioned in Example 4, the violation between
candidates No402. . . and #531. . . (denoted by red arrows
in Figure 3) requires x21 + x31 ≤ 1, i.e., 0.0 + 1.0 ≤ 1.

During rounding, we first select#402. . . for t2 and#531. . .
for t3, whose xij values are the highest 1.0. For the next
largest xij , suppose that #402. . . with x12 = 0.5 is selected
for t1. Since it is a valid assignment compatible with all
neighbors, Line 8 in Algorithm 1 sets other candidates of
t1 to negative. Finally, all the xij in IA have been consid-
ered, and the generated filling is exactly the full filling I ′′ in
Table 3.

Unfortunately, we do not get a theoretical performance
guarantee for theRound approximation algorithm, although
this simple heuristic, based on LP relaxation, performs well
in practice (as shown in the experiments).

5. RANDOMIZED ALGORITHM AND DE-
RANDOMIZATION

To ensure the quality in terms of filling gain, in this sec-
tion, we devise algorithms that return maximal fillings, with
certain approximation guarantees w.r.t. the optimal maxi-
mum filling.

5.1 Randomized Imputation
For randomly sampling fillings, each candidate is associ-

ated with a probability of being selected as a filling. The
solution xij of LP indicates a heuristic of constructing a
filling with larger gain. Intuitively, we may employ xij to
interpret the probability of aj ∈ can(ti) being selected.

Pr[t′i[A] = aj ] =
xij + ε

ciε+ 1 +
∑ci

j=1 xij
(5)

Pr[t′i[A] =−] =
1

ciε+ 1 +
∑ci

j=1 xij
(6)

where ε ≥ 0 trades off the contribution of LP estimations.
When ε = 0, the probability is exactly proportional to xij .
On the other hand, if ε takes an extremely large positive, it
approximately denotes equal probability having Pr[t′i[A] =
aj ] ≈ 1

ci
for each aj ∈ can(ti) and Pr[t′i[A] =−] ≈ 1

ciε
.

Proposition 5. We have

Pr[t′i[A] =−] +
∑

aj∈can(ti)

Pr[t′i[A] = aj ] = 1.

The conclusion is straightforward according to the defini-
tions in formulas (5) and (6).

Proposition 6. There exists a randomized algorithm which
finds a full filling to any fully-fillable instance in expected
time O((1/p)m), where p is the minimum probability of a
candidate being selected.

Algorithm 2 works in a pay-as-you-go way, i.e., repeats `
steps of random filling. The more repeats are conducted,
the more likely it returns the maximum filling. Note that
there is no need to consider assignments with violations to
restrictions. They are discarded by the algorithm in Line 6.

The correctness of the Random algorithm is obvious by
showing that all the returned fillings are maximal. Most
importantly, all the possible maximal/maximum fillings are
able to be sampled by the algorithm.

Algorithm 2 Random(IA,Φ[A])

Input: IA with candidate sets can(IA) and local neighbor
restrictions Φ[A]

Output: A filling I ′
A

1: initialize probabilities
2: repeat
3: for each ti ∈ IA do
4: randomly draw a value aj ∈ can(ti) with probabil-

ity Pr[t′i[A] = aj ] for t′i[A] or leave it as null with
probability Pr[t′i[A] =−]

5: if t′i[A] = aj is in violation with any t′l[A] then
6: t′i[A] :=−
7: if I ′

A is not maximal then
8: fill null cell by any valid candidate (not in violation)
9: rank I ′

A in the top-k list K
10: until ` times
11: return the top-1 filling in K with the highest filling

gain

Figure 4: Random filling with probability

Proposition 7. All the possible maximal/maximum fillings
could be generated by the Random algorithm.

Example 6 (Example 5 continued). Let the number of each
candidate in Figure 4 denote its probability (e.g., computed
from the LP solution in Figure 3 with ε = 1). Value ‘−’
denoted by square also has a probability of being selected.

Random algorithm randomly draws a candidate with the
given probability for each tuple, e.g., t1[Address] =#402. . . ,
t2[Address] =− and t3[Address] = #531. . . . Since the re-
maining null cell in t2 can be further filled, the current fill-
ing is not maximal. According to Line 8 in Algorithm 2, the
remaining null cell should be filled by any valid candidate, if
exists, e.g., t2[Address] =#402. . . . Finally, a maximal filling
is constructed.

Performance Analysis on Expected Filling Gain E[W ]

We study the performance guarantee of the Random algo-
rithm w.r.t. the maximum filling (optimum solution). Let
random variable W denote the filling gain, i.e., |∆(I ′

A, IA)|,
having 0 ≤ W ≤ |IA|. In the following, we analyze the
bound of expected W , i.e., E[W ], the number of null cells
filled by random filling in expectation.

Consider an assignment t′i[A] = aj , aj ∈ can(ti), of any
tuple ti ∈ IA.

For any tuple tl in IA in neighborhood with ti, i.e., tl ∈
IA, φ[A](ti, tl) ∈ Φ[A], the probability of t′i[A] = aj compat-
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ible with t′l[A] is

Pr[(t′i[A] = aj , t
′
l[A]) � φ[A](ti, tl)

]
(7)

=Pr[t′l[A] =−] +
∑

ak∈can(tl),(aj ,ak)�φ[A](ti,tl)

Pr[t′l[A] = ak].

Consequently, the probability of t′i[A] = aj compatible
with all the tuples tl in neighborhood with ti is

Pr
[
(t′i[A] = aj , I

′
A) � Φ[A]

]
(8)

=
∏

tl∈IA,φ[A](ti,tl)∈Φ[A]

Pr[(t′i[A] = aj , t
′
l[A]) � φ[A](ti, tl)].

Considering all the non-null assignments aj ∈ can(ti) of
each ti ∈ IA, with probability Pr[t′i[A] = aj ], we have

E[W ] =

m∑
i=1

ci∑
j=1

Pr[t′i[A] = aj ] Pr
[
(t′i[A] = aj , I

′
A) � Φ[A]

]
.

(9)

Example 7 (Example 6 continued). We illustrate the com-
putation of E[W ] for the example in Figure 4. Consider the
first candidate No402. . . (aj in formula (7)) of t2 (i.e., ti)
and its neighbor t1 (i.e., tl). The candidate is not in viola-
tion with any candidate of t1. The probability of t′2[A] =
No402. . . compatible with t′1[A] is

Pr[(t′2[A] = No402. . . , t′1[A]) � φ[A](t2, t1)
]
=

1

4
+
3

8
+
3

8
= 1.

For the neighbor t3, however, No402. . . is in violation with
#531. . . , as discussed in Example 4, Figure 3. The proba-
bility of t′2[A] = No402. . . compatible with t′3[A] is

Pr[(t′2[A] = No402. . . , t′3[A]) � φ[A](t2, t3)
]
=

1

3
.

By considering all the neighbors {t1, t3} of t2 in formula
(8), we have the probability of t′2[A] = No402. . . compatible
with all neighbors

Pr
[
(t′2[A] = No402. . . , I ′

A) � Φ[A]
]
= 1 ∗ 1

3
.

For each candidate of all tuples, we can compute such a
probability, e.g., Pr

[
(t′2[A] = #402. . . , I ′

A) � Φ[A]
]
= 1,

Pr
[
(t′3[A] = #531. . . , I ′

A) � Φ[A]
]
= 3

4
, etc.

Finally, by the weighted aggregation in formula (9), we
have E[W ] = 3

8
∗ 1+ 3

8
∗ 1+ 1

4
∗ 1

3
+ 1

2
∗ 1+ 2

3
∗ 3

4
= 11

6
. That

is, a number of 11
6

null cells are filled by random filling in
expectation.

Theorem 8. The Random algorithm returns a solution

with the expected filling gain E[W ] ≥
(

1
cε+2

)b+1
OPT , where

OPT is the optimal filling gain of the maximum filling, c is
the maximum candidate size of a tuple in IA, and b is the
maximum number of neighbors of a tuple in IA.

When taking ε = 0, i.e., the probability is proportional to

xij , we have E[W ] ≥
(
1
2

)b+1
OPT .

5.2 Derandomization
Theorem 8 gives only the performance guarantee in ex-

pectation of the Random algorithm. In the following, we
advance the approach by giving a deterministic bound of ap-
proximation rather than expectation. The idea is to guide
the filling via conditional expectation instead of assigning
randomly in each step. (More specifically, each step chooses
an assignment that maximizes the conditional expectation.)

5.2.1 Conditional Expectation
Consider the conditional expected filling gain, given a

number of tuples t1, . . . , ti−1 that have been filled,

E[W | I ′i−1
A ] = E[W | t′1[A] = a1, . . . , t

′
i−1[A] = ai−1],

where the assignments of t1, . . . , ti−1 have been determined,
denoted as I ′i−1

A . Intuitively, E[W | I ′i−1
A ] denotes the

number of filled cells in t1, . . . , ti−1 plus the expectation of
cells that can be filled in the remaining ti, . . . , tm. We have
E[W | I ′0

A ] = E[W ] initially, and E[W | I ′m
A ] is the exact

gain of the filling I ′m
A .

Let t′i[A] = ai, ai ∈ can(ti) ∪ {−} be the next assignment.
We study the computation of the conditional expectation
E[W | I ′i

A ]. There is no need to compute it from scratch. In-
stead, it can be calculated incrementally from E[W | I ′i−1

A ]
by considering the following possible cases.

Case 1. If t′i[A] = ai is in violation with any t′1[A] =
a1, . . . , t

′
i−1[A] = ai−1, no valid solution can be generated,

i.e., E[W | I ′i
A ] = 0.

Case 2. For t′i[A] = ai compatible with existing assign-
ments, we further consider three sub-cases for updating the
compatible probability in formula (8) of other tuples.

Case 2.1. For any tl not in neighborhood with ti, the
compatible probability will not change, having

Pr
[
(t′l[A] = ak, I

′
A) � Φ[A] | I ′i

A

]
=Pr

[
(t′l[A] = ak, I

′
A) � Φ[A] | I ′i−1

A

]
.

Case 2.2. For tl in neighborhood with ti, we have

Pr
[
(t′l[A] = ak, I

′
A) � Φ[A] | I ′i

A

]
= 0,

if (ai, ak) 6� φ[A](ti, tl), for any ak ∈ can(tl).
Case 2.3. For tl in neighborhood with ti, and ak ∈

can(tl) such that (ai, ak) � φ[A](ti, tl), we have

Pr
[
(t′l[A] = ak, I

′
A) � Φ[A] | I ′i

A

]
(10)

=
Pr

[
(t′l[A] = ak, I

′
A) � Φ[A] | I ′i−1

A

]
Pr

[
(t′l[A] = ak, t′i[A]) � φ[A](tl, ti) | I ′i−1

A

] .
Case 3. If the next assignment is t′i[A] =−, for any tl in

neighborhood with ti, it belongs to the above Case 2.3.
Finally, by the weighted summation in formula (9) of com-

patible probabilities updated in the aforesaid cases, E[W |
I ′i
A ] is computed.

Example 8 (Example 7 continued). Suppose that t′3[A] =
#531. . . is the first assignment in Figure 4. This assignment
will not change the compatible probability of t1 which is not
in neighborhood with t3, i.e., Case 2.

Since No402. . . is in violation with #531. . . , as discussed
in Example 4 Figure 3, i.e., Case 2.2, we have

Pr
[
(t′2[A] = No402. . . , I ′

A) � Φ[A] | t′3[A] = #531. . .
]
= 0.

For Pr
[
(t′2[A] = #402. . . , I ′

A) � Φ[A]
]
= 1, we update it

by dividing Pr[(t′2[A] = #402. . . , t′3[A]) � φ[A](t2, t3)
]
= 1

according to Case 2.3. It still has

Pr
[
(t′2[A] = #402. . . , I ′

A) � Φ[A] | t′3[A] = #531. . .
]
= 1.

Finally, since t′3[A] is not ‘−’ and will contribute 1 in the
conditional expectation, we have E[W | t′3[A] = #531. . . ] =
3
8
∗ 1 + 3

8
∗ 1 + 1

4
∗ 0 + 1

2
∗ 1 + 1 = 9

4
.
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5.2.2 Filling Guided by Conditional Expectation
Algorithm 3 presents the filling guided by conditional ex-

pectation. Instead of random assignment, in each step, we
choose an assignment that can maximize the expected filling
gain of the remaining unassigned cells.

t′i[A] = argmax
aj∈can(ti)∪{−}

E[W | t′1[A] = a1, . . . , t
′
i[A] = aj ]

(11)

It is found by searching Emax, the maximum E[W | I ′i
A ],

from Lines 4 to 10 in Algorithm 3. ProcedureConExp(E[W |
I ′i−1
A ], ti, ai) computes E[W | I ′i

A ] from E[W | I ′i−1
A ] by con-

sidering all the aforesaid Cases.

Algorithm 3 Derand(IA,Φ[A])

Input: IA with candidate sets can(IA) and local neighbor
restrictions Φ[A]

Output: A filling I ′
A

1: initialize probabilities
2: for each ti ∈ IA do
3: t′i[A] :=− {construct I ′i

A}
4: Emax := ConExp(E[W | I ′i−1

A ], ti,− )
5: for each aj ∈ can(ti) do
6: E := ConExp(E[W | I ′i−1

A ], ti, aj)
7: if E > Emax then
8: Emax := E
9: t′i[A] := aj

10: E[W | I ′i
A ] := Emax

11: if I ′
A is not maximal then

12: fill null cell by any valid candidate (not in violation)
13: return I ′

A

Procedure ConExp(E, ti, ai)

Input: E denotes E[W | I ′i−1
A ] and assignment ai of ti[A]

Output: E[W | t′1[A] = a1, . . . , t
′
i−1[A] = ai−1, t

′
i[A] = ai]

1: E:=E-
∑

j Pr[t
′
i[A] = aj ] Pr

[
(t′i[A] = aj , I

′
A) � Φ[A] | I ′i−1

A

]
2: if ai 6=− then
3: E := E + 1
4: for each tl in neighborhood with ti, l = i+1, . . . ,m do
5: for each ak ∈ can(tl) do
6: E:=E − Pr[t′l[A]=ak] Pr

[
(t′l[A]=ak, I

′
A) � Φ[A] | I ′i−1

A

]
7: if (ai, ak) � φ[A](ti, tl) then
8: update Pr[(t′l[A]=ak, I

′
A) � Φ[A] | I ′iA ] by formula

(10)
9: E:=E + Pr[t′l[A]=ak] Pr

[
(t′l[A]=ak, I

′
A) � Φ[A] | I ′iA

]
10: return E

Example 9 (Example 8 continued). Consider another as-
signment of t3, i.e., t′3[A] =−. We compute its E[W |
t′3[A] =−] = 3

8
∗ 1 + 3

8
∗ 1 + 1

4
+ 1

2
∗ 1 + 0 = 3

2
in Lines

3-4 in Algorithm 3. As shown in Example 7, E[W | t′3[A] =
#531. . . ] = 9

4
is larger. Therefore, t′3[A] = #531. . . is as-

signed.
Similarly, for the next tuple t2, we compute

E[W | t′2[A] = #402. . . , t′3[A] = #531. . . ] =
11

4
,

E[W | t′2[A] = No402. . . , t′3[A] = #531. . . ] = 0,

E[W | t′2[A] =−, t
′
3[A] = #531. . . ] =

7

4
.

The first one is larger and selected.
Finally, it leads toE[W | t′1[A] = #402. . . , t′2[A] = #402. . . ,

t′3[A] = #531. . . ] = 3, where all null cells are filled.

5.2.3 Correctness and Performance Analysis
First, the output filling is always maximal, referring to

Line 12. Moreover, we can show that the maximum condi-
tional expectation (including the final E[W | I ′m

A ]) is non-
decreasing, i.e., no less than the initial E[W | I ′0

A ] = E[W ].

Lemma 9. There always exists an assignment t′i[A] = ai, ai ∈
can(ti) ∪ {−} such that E[W | I ′i

A ] ≥ E[W | I ′i−1
A ] , i.e.,

E[W | t′1[A] = a1, . . . , t
′
i−1[A] = ai−1, t

′
i[A] = ai]

≥E[W | t′1[A] = a1, . . . , t
′
i−1[A] = ai−1]

Given E[W | I ′0
A ] = E[W ], it is sufficient to conclude the

bound of E[W | I ′m
A ].

Theorem 10. The Derand algorithm guarantees to output
a solution with filling gain ≥ E[W ].

Referring to Theorem 8, it is not surprising that the filling

gain by derandomization is at least
(

1
cε+2

)b+1
OPT . When

ε = 0, we have approximation bound
(
1
2

)b+1
OPT .

As shown in Procedure ConExp, the conditional expecta-
tion can be computed by considering all the neighbors of ti
and their corresponding candidates with complexity O(cb).
Considering all the m tuples in IA and their candidates, the
complexity of Algorithm 3 is O(mc2b).

6. EXPERIMENTS
This section reports the experimental evaluation on both

effectiveness and efficiency of the proposed approaches. All
programs are implemented in Java and the experiments were
performed on a PC with 3.4 GHz CPU and 16 GB RAM.

6.1 Experimental Settings
We employ several real and synthetic datasets, including

the Restaurant6 dataset with name, address, type and city
information of 864 restaurants, and a synthetic dataset gen-
erated by the UIS database generator6.

Following the same line of evaluating data repairing tech-
niques by artificially injecting errors [2], we randomly re-
move values as missing data. Imputation approaches are
then applied to fill/recover these removed values.

Let truth be the set of removed cell values and found be
the set of filling results returned by imputation algorithms
(not including the null cells that are failed to fill). The

recall accuracy is given by recall = |truth∩found|
|truth| , i.e., the pro-

portion of null cells that are accurately filled/recovered; the

precision accuracy is precision = |truth∩found|
|found| , denoting the

proportion of filled cells (non-null) that are correct; and f-
measure= 2 · precision·recall

precision+recall
represents an overall accuracy

[16]. In particular, while the null cells that are failed to fill
(leave ‘ ’ unchanged) count negatively toward the recall ac-
curacy, these null cells are not necessary to be considered in
the precision accuracy.

Enlightened by discovering fds from the complete part
of incomplete data [18], dds used in the experiments are
also obtained by applying the discovery techniques [14, 15]
(with manual verification). Specifically, to avoid “finding
accidental rules which may not always be dependable nor
correct”, the discovery approaches [14, 15] use support and
confidence guarantees. To avoid accidental undependable

6http://www.cs.utexas.edu/users/ml/riddle/data.html
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Figure 5: Number of neighbors (Restaurant)

rules, the support measures the number of tuple pairs that
can be covered by the distance thresholds on determinant
attributes X of rules. To ensure correctness, the confidence
evaluates the proportion of the aforesaid covered tuple pairs
that are also covered by the distance threshold on depen-
dent attribute A of the rule. The discovery approaches [14,
15] return high confidence (≥ 0.95 in our experiments) rules,
ranked by their supports in decreasing order. (Rules with
redundant semantics are excluded from the results, see [14,
15] for more details.) We manually exam the returned rules
by discarding those low support, ranked far behind (unreli-
able) rules, which may overfit the data. Owing to the limited
space, we present the full list of dds obtained and used in
the experiments, in the long version technique report [1].

To vary the distance in rules, e.g., by tightening towards
0, it turns similarity rules to equality rules. The precision
of imputation may slightly increases, as the equality-based
Certain illustrated in Figure 6(b), while the correspond-
ing recall drops dramatically in Figure 6(a). The overall f-
measure is significantly worse. On the other hand, if we relax
the distance which makes almost all the data pass the exam-
ination of a rule, it becomes useless. Such variations of rule
distance have been reported in the preliminary study [15].

6.2 Comparison with Existing Techniques
This experiment compares our proposed method to Cer-

tain fixes with editing rules [7] on equality neighbors, ER-
ACER [12] based on statistics over equal values, MIBOS [19]
with tuple similarity defined on value equality, and CMI [20]
considering imputation between most similar tuples.

First of all, Figure 5 observes the number of equality and
similarity neighbors of tuples (with null cells), w.r.t. editing
rules and similarity rules, respectively. Three points from
higher to lower of each bar denote the maximum, average,
minimum numbers of neighbors. The missing rate in sub-
figure (a), e.g., 0.4, means that 40% of the tuples have null
cells, while the data size in sub-figure (b) denotes the num-
ber of all tuples in a test. As illustrated, the (average) num-
ber of similarity neighbors is greater than that of equality
neighbors. It verifies our claim (in Figure 1) that similarity
rules can identify more neighbors than equality-based ones.

Figure 6 illustrates that a significantly higher f-measure
of imputation is achieved by similarity neighbors (using our
proposed Derand approach, see detailed results below). Pos-
sibly, the precision of our Derand could be a bit lower than
that of equality-based Certain [7] in some tests, e.g., with
missing rate 0.05 in Figure 6(b), which however is not stably
observed in all the tests. This is largely because the found
set of filled values by Certain is extremely small. Indeed, in
most tests in Figure 6(b)(e), the precision of Derand is com-
parable to (higher than) that of the equality-based methods.
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Figure 6: Imputation accuracy (Restaurant)

By filling more null cells, Derand shows a clearly higher re-
call in Figure 6(a)(d), and higher overall f-measure accuracy.

For MIBOS [19], whose tuple similarity is still defined on
value equality, it shows very similar results to the equal-
ity neighbor-based Certain [7] with editing rules. In par-
ticular, as shown in Figure 6, given the very limited num-
ber of filled missing values (extremely low recall), the cor-
responding precision observations are not stable. Never-
theless, our dds-based Derand shows comparable precision
to the equality-based methods, but significantly higher re-
call owing to the successful identification of value similarity
neighbors.

The CMI [20] method considers similarities over all the at-
tributes, and thus has more opportunities in filling missing
values with higher recall in Figure 6(a). However, strictly
considering similarities over all the attributes, including those
irrelevant ones, limits the power of finding similarity neigh-
bors by CMI. Instead, by explicitly using only the (subset
of) attributes specified in dds, our Derand can identify and
utilize more (partial) similarity neighborhoods between tu-
ples that do not belong to the same cluster. Thereby, as
shown in Figure 6(a), the recall of Derand is even higher.

Figure 7 reports the results on various duplication rates.
The Restaurant dataset originally contains at most two tu-
ples (versions) for denoting one entity. To introduce higher
duplication rate, we enrich more tuples for an entity by ran-
domly choosing two alternative values (versions) on each
attribute. A duplication rate, e.g., 6, denotes that there
are six tuples (versions generated) for denoting an entity,
while the minimum duplication rate 1 denotes no duplicates.
For duplication rate 1, it is not surprising that the CMI
method [20] can hardly perform, since no duplicates exist
in such a scenario. Remarkably, our maximum filling-based
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Figure 7: Varying duplication rates (Restaurant)
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Figure 8: Comparison on various attributes (UIS)

Derand still shows a very significant improvement in impu-
tation accuracy. Moreover, almost all the approaches benefit
from higher duplication rates. Our proposed Derand already
achieves considerably high accuracy when duplication rate
is small, such as 2. The results verify again that our similar-
ity rule-based method can successfully utilize the similarity
relationships between tuples, even they are not duplicates
(denoting the same entity). For the efficiency under vari-
ous duplication rates (with the same data size), as shown in
Figure 7(d), most methods are not affected clearly by dupli-
cation rates, except CMI. The reason is that the K-means
clustering algorithm in CMI converges more quickly under
a higher duplication rate.

Figure 8 presents the imputing results on specific attributes.
As illustrated, our proposed Derand with similarity rules
shows a clear improvement of f-measure on all the attributes,
from 0.4-0.8 (by equality neighbors) to 0.5-0.9 (with simi-
larity neighbors). MIBOS [19] fails to fill any missing value
in all the tests and thus does not appear in Figure 8.

6.3 Application in Record Matching
To further validate the effectiveness of applying imputa-

tion in real applications, we consider the accuracy of record
matching application [5]. An existing rule-based method [6]
is directly implemented and performed over the Missing data
without imputation, the filled data by Certain [7], ERACER
[12], MIBOS [19], CMI [20], and our proposed Derand.

As shown in Figure 9, the record matching accuracy is
generally related to the filling accuracy in Figures 6 and 8.
With imputation, some missing data could be filled and the
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Figure 9: Application in record matching
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Figure 12: Approximation performance (Restaurant)

matching accuracy is improved compared to Missing with-
out imputation. Our Derand with high imputation recall
also leads to significantly higher recall accuracy of record
matching application. Meanwhile, the record matching pre-
cision by applying Derand is comparable to that of Certain,
since the imputation of Derand is as accurate as Certain.

6.4 Performance of Proposed Methods
In general, the imputation accuracy could be improved by

given more reasonable rules. However, redundant semantics
may exist among rules, which will not further improve the
chance or accuracy of imputation. As shown in Figure 10, by
given more than 4 dds, the imputation accuracy cannot be
further improved, which verifies the aforesaid justification.
In practice, we can apply the existing techniques [14, 15]
for reasoning about rules to eliminate redundant semantics,
which is out the scope of this study.

The second experiment evaluates the performance of dif-
ferent techniques in our proposal. Figure 11 provides an
overview of all the proposed approaches. Integer linear pro-
gramming (ILP) can be implemented by branch and bound,
and linear programming (LP) employs simplex. When com-
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Figure 11: Overview of approaches
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Figure 13: Varying missing rates (Restaurant)
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puting Pr by formula (5), as introduced at the beginning of
Section 5.1, for a large ε, each aj ∈ can(ti) has a similar
probability 1

ci
of being selected. We consider particularly

this large ε case (namely LE), as its Pr can be directly com-
puted without calling the costly LP solver.

Figure 12 observes (in Restaurant) the approximation ra-
tio by comparing the filling gain of approximate fillings to
the maximum filling (OPT). Derand with either LP or LE
can achieve filling gains almost the same as the maximum
filling. As mentioned, we do not obtain any performance
guarantee for the Round approach, whose approximation
ratio is low in the test. If the simple LE is used instead of
LP, the approximation ratio of Round(LE) is even worse.

Next, we study the time and accuracy performance of im-
putation in Figures 13 and 14 with various missing rates and
data sizes. Referring to the hardness of the filling problem,
it is not surprising that the exact approach ILP takes ex-
tremely high costs. For approximation, Derand with both
LP and LE can achieve the best accuracy in most tests.
With the increase of missing rates, the time cost of LP-
encapsulated approaches increases heavily in Figure 13(a).
The rationale is that the LP step takes most of the time
cost in the approximate filling approach, e.g., Round(LP).
When the simple LE is applied instead of LP, the time cost
is significantly lower. Meanwhile, with the increase of miss-
ing rate, it is not surprising that the accuracy drops. Owing
to the distinct relationships in tuple pairs, the accuracy per-
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Figure 16: Scalability (UIS)

formance may be different in various sets of tuples, as show
in Figure 14(b). Nevertheless, similar results of approaches
are observed and the accuracy is higher than 0.4 in most
tests. Figure 14(a) shows that the time cost increases as the
increase of data sizes.

7. RELATED WORK
The idea of imputing missing values based on other avail-

able information is widely adopted in solving data impu-
tation problems, and has been successfully applied in im-
portant areas such as analysis of variance of planned ex-
periments, survey sampling, multivariate analysis, and so
on [11]. Most preliminary studies dedicated to data impu-
tation, e.g., tuple similarity-based [19] or clustering-based
[20], also utilize the existing non-null values (assumed to be
correct without modification) for imputation. Following the
same line of imputing missing data under the constraints of
certain rules, a.k.a. rule-based imputation [7], in this study,
we also focus on filling the missing values on the A (depen-
dent attribute) according to the X (determinant attributes)
values. Detecting and modifying the existing incorrect non-
null values, which is known as the data repairing problem,
is out the scope of this study.

It is worth noting that any attribute could be the depen-
dent attribute A, i.e., the imputation can be applied to any
attribute in a relation. For example, Figure 8 shows the ex-
perimental results of imputation on all the 10 attributes in
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the UIS dataset. Therefore, rather than imputation only on
one attribute, we can practically fill the missing values over
all the attributes.

The studied rule-based imputation of missing data is dif-
ferent from the constraint-based data repairing for eliminat-
ing violations [2, 9, 4] mainly in two aspects: (1) Data repair-
ing often finds a repair that is closest to the initial values,
known as the minimum change principle. For data imputa-
tion, however, there are no initial values (they are missing)
to compare with, and thus the imputation relies only on the
neighbors. (This is also the reason why the filling should
not be a random guess of a value from the domain without
any supporting neighbors, as indicated in Section 2.1.) In
this sense, it is more urgent to study the extensive similarity
neighbors for imputing missing data. (2) Repairing a value
in an attribute may introduce violations to others. For data
imputation, luckily, filling a null cell in an attribute will
never introduce violations to other attributes, as analyzed
at the end of Section 2.1. This promising property enables
imputing attributes one-by-one.

Nevertheless, to practically address the potential incorrect
values (in some antecedent attributesX) in the existing non-
null data, a natural idea is to incorporate the data repairing
and imputation techniques. We believe that after correcting
the existing non-null values more accurately by the effective
repairing techniques such as [3, 4, 17], the missing data im-
putation certainly benefits (not only our proposal but also
all the other imputation methods). Indeed, after filling some
null values, new inconsistencies may be uncovered for fur-
ther repairing. In this sense, data imputation and repairing
techniques are complementary. We may gradually improve
the quality of data by iteratively applying the imputation
and repairing approaches in turn. As an interesting future
study, it is promising to simultaneously perform data repair-
ing and imputation.

8. CONCLUSIONS
Imputing missing values of a tuple replies on others (neigh-

bors) sharing the same information. Such filling could barely
be done in the presence of data variety, owing to the very
limited number of equality neighbors. It is essential to ex-
plore the extensive similarity neighbors, in order to fill more
missing values (maximizing the data imputation). In this
paper, we propose exact and approximate approaches for
computing the maximum/maximal fillings. In particular,
efficient approximation algorithms are devised with certain
performance guarantees.

To support and utilize the dds that might not be exactly
correct, i.e., approximate dds, a natural extension is to fur-
ther rank the filling results according to the accuracy (con-
fidence) of dds rules that the filling violates. Intuitively,
a filling violates those high confidence dds should probably
be ranked lower. We believe that there is a room to further
improve the filling performance by such imperfect dds rules.
Since it leads to a new research problem, more comprehen-
sive studies are expected in the future.
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